Estimation in a class of nonlinear heteroscedastic time series models
نویسنده
چکیده
Abstract: Parameter estimation in a class of heteroscedastic time series models is investigated. The existence of conditional least-squares and conditional likelihood estimators is proved. Their consistency and their asymptotic normality are established. Kernel estimators of the noise’s density and its derivatives are defined and shown to be uniformly consistent. A simulation experiment conducted shows that the estimators perform well for large sample size.
منابع مشابه
Contributions to The Estimation of Mixed-State Conditionally Heteroscedastic Latent Factor Models: A Comparative Study
Mixed-State conditionally heteroscedastic latent factor models attempt to describe a complex nonlinear dynamic system with a succession of linear latent factor models indexed by a switching variable. Unfortunately, despite the framework’s simplicity exact state and parameter estimation are still intractable because of the interdependency across the latent factor volatility processes. Recently, ...
متن کاملSome Nonlinear Threshold Autoregressive Time Series Models for Actuarial Use
This paper introduces nonlinear threshold time series modeling techniques that actuaries can use in pricing insurance products, analyzing the results of experience studies, and forecasting actuarial assumptions. Basic “self-exciting” threshold autoregressive (SETAR) models, as well as heteroscedastic and multivariate SETAR processes, are discussed. Modeling techniques for each class of models a...
متن کاملRobust Multivariate and Nonlinear Time Series Models
Time series modeling and analysis is central to most financial and econometric data modeling. With increased globalization in trade, commerce and finance, national variables like gross domestic productivity (GDP) and unemployment rate, market variables like indices and stock prices and global variables like commodity prices are more tightly coupled than ever before. This translates to the use o...
متن کاملWhich Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?
Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...
متن کاملModel Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کامل